The mean for the normal glucose control is 76 mg/dL and one standard deviation is 3.0. What are the 95% confidence limits for the glucose control?

Prepare for the AAB Medical Technologist (MT) – Chemistry Exam. Tackle multiple choice questions with explanations and track your progress. Excel on your exam day!

To determine the 95% confidence limits for the glucose control, we can use the mean and standard deviation provided, along with the understanding of how confidence intervals work in a normal distribution.

The mean glucose level is given as 76 mg/dL, and the standard deviation is 3.0 mg/dL. In a normal distribution, approximately 95% of the values lie within two standard deviations from the mean. This means that to find the 95% confidence limits, you would calculate:

  • Lower limit: Mean - 2(Standard Deviation) = 76 - 2(3) = 76 - 6 = 70 mg/dL

  • Upper limit: Mean + 2(Standard Deviation) = 76 + 2(3) = 76 + 6 = 82 mg/dL

This results in confidence limits ranging from 70 mg/dL to 82 mg/dL, which indicates that we can be 95% confident that the true population mean for glucose levels falls within this interval.

Thus, the correct choice reflects these computed confidence limits accurately.

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy